丰满少妇人妻无码专区,国产精品无码翘臀在线观看,xx性欧美肥妇精品久久久久久,国产成人无码综合亚洲日韩

Skip to content Skip to navigation

System designers have long given hydraulic cylinder-based motion control systems first consideration in applications requiring handling of loads upwards of 1.360 kg, mostly because of the high power density of the cylinders themselves. But when the designer factors in the large space required for the intricate infrastructure needed to achieve that power, that power density becomes much less attractive.

Now, however, thanks to technology that builds hydraulic motion control into an envelope smaller than a conventional electromechanical unit, designers and end-users can enjoy the power conversion advantages of hydraulic fluids without the expense, complexity, and need to clean up after conventional hydraulic cylinder-based systems.

Electro-hydraulic linear actuators are fast becoming the motion designer’s choice over hydraulic cylinders for a wide range of heavy load handling in outdoor equipment, marine, military, aerospace and many other applications.

Structural differences

A hydraulic cylinder-based motion control system converts electrical energy into motion using an assembly involving oil reservoirs, electric motors, pumps, oil filters, relief valves, and directional valves. The speed desired and the size of the cylinder dictate the size of the pump needed, which then determines the size of all other components. The higher the required speed, the higher the cost of the system and the greater the operating space needed.

An electro-hydraulic system, in contrast, embeds the equivalent of that infrastructure into an envelope that is about the same size as a conventional electromechanical actuator. (Figure 1) An electric motor rotating clockwise turns a pump that pressurize the hydraulic fluid. Valves open to draw fluid from both the reservoir and head side, and control delivery to extend the rod. On retraction, the motor runs counterclockwise, reversing the operation, and returning the fluid to the reservoir and the opposite side of the piston. For loads of up to 2.180 kg, miniaturising that infrastructure has significant advantages over hydraulic cylinders in power density, maintenance requirements, location versatility, cleanliness and cost, while handling comparable shock loading. (Figure 2)

Figure 1: Extension cycle Thomson Warner Linear H-Track electro-hydraulic actuator.

Figure 2: Comparison of hydraulic cylinder-based systems and electro-hydraulic actuators.

Load capacity

By replacing the gear and lead screw assemblies of conventional electromechanical actuators with a compact hydraulic system, electro-hydraulic actuators can move up 2.180 kg. Loads of this size have typically been relegated to hydraulic cylinder-based systems. This load range is more than 500 kg greater than the capacity of a conventional electromechanical actuator.

Power density

For raw power density, electro-hydraulic designs have a distinct advantage. While the electro-hydraulic actuator and hydraulic cylinder may not be too much different in size, the support infrastructure needed to operate the hydraulic option consumes significant space.

Cleanliness and safety

Electro-hydraulic actuators also have an advantage in cleanliness and safety. External leaks at pipe and hose fittings of hydraulic cylinder systems occur over time due to vibration and other factors. When these leaks happen, the cylinder leaks a film of oil into the plant environment with every stroke.

Internal leaks present an even greater maintenance challenge. Leaks inside the pump, pressure controls, directional valves and cylinder convert pressure and flow to heat or wasted energy, which will reduce actuator speed. In industrial settings, leaks also cause odor and present slipping hazards.

Maintenance requirements

In addition to maintenance issues related to the hydraulic fluid itself, hydraulic cylinder systems have additional maintenance demands, which increase as the cylinders begin to wear and leak around the piston. Pumps are also affected by wear, internal leaks and pressure losses of each component, including the conductors, hose and pipes. Electro-hydraulic actuators are self-contained units which require no maintenance.

Location versatility

Because they don’t need an elaborate support infrastructure, electro-hydraulic actuators make it more effective to move control closer to the point of application. Hydraulic cylinders are far less than ideal for any application that is hard to access. If a cherry picker vehicle designer wants motion control to tilt the bucket, for example, it would be far easier to run electrical wire to up the boom than hydraulic fluid transport tubing. This solution also removes potential concerns about fluid dripping into the environment.

A designer of a tractor-hauled seeding unit might output hydraulic lines to the rear of the tractor to control the depth into which the planter cuts to deposit the seed. Replacing that fluid hose with an electric cable has many advantages, such as avoiding costly infrastructure and fluid leakage into a food crop.

Shock loading

Historically, hydraulic technology has been better able to handle sudden shocks, such as the impact of a snow-covered concrete barrier on an cylinder-guided plow blade. However, embedding this technology into electro-hydraulic actuators gives them shock-loading benefits on par with hydraulic cylinders, countering any advantage they might have previously had in this area. Another example of shock handling would be a mower deck running into a large rock. As with the snowplow example, the electro-hydraulic actuator would absorb the sudden energy spike instantly by redistributing the fluids throughout the internal valves and pump housing.

Cost effectiveness

Conventional hydraulic systems are most cost effective when they are already specified into a design already containing hydraulic elements, and it is just a matter of adding cylinders to the initial design. Otherwise, there is a cost in designing the support infrastructure and incorporating that into the overall system design.

Eliminating fluid handling and storage, leak and spill management, and additional maintenance costs of identifying and repairing leaks can also reduce lifecycle costs for end-users. These benefits are marketable for OEMs and can easily be communicated as advantages to their customers.

The Thomson Warner Linear H-Track electro-hydraulic linear actuator provides the performance of hydraulics without the expansive space requirements nor the prohibitive cost of full-sized hydraulic systems. It handles force up to 21.350 N and features the smallest mounting envelope in its class.

Conclusion

For new application designs requiring handling of loads up to 2.180 kg and speeds up to 100 mm (4 inches) per second, electro-hydraulic actuators have significant advantages over hydraulic cylinder-based systems in power density, cleanliness of operation, versatility and lifecycle costs. They also match hydraulic systems in load and shock handling performance.

back to top 午夜精品久久久久久| 狠狠色婷婷久久综合频道毛片| а√天堂www在线а√天堂视频| 亚洲国产av一区二区三区| 欧美精品V欧洲精品| 亚洲av不卡一区二区三区| 18禁黄网站禁片免费观看| 99国精品午夜福利视频不卡99| 久久久国产乱子伦精品| 精品国产青草久久久久福利| 无码AV永久免费专区不卡| 天天澡日日澡狠狠欧美老妇| 漂亮人妻洗澡被公强 日日躁| 国产午夜无码精品免费看| 99国产精品久久久久久久成人| 99久久无码私人网站| 亚洲中文久久久久久精品| 亚洲超碰97无码中文字幕| 国产在线 | 中文| 久久久无码精品一区二区三区蜜桃| 中文亚洲欧美日韩无线码| 无码日韩人妻精品久久蜜桃| YW尤物AV无码国产在线观看| 女人张开腿给我桶视频| AV在线播放日韩亚洲欧| 国产精品毛片无码| 无码小电影在线观看网站免费| 国产亚洲精品无码不卡| 久久久一本精品99久久K精品66| 亚洲国产精品久久久久爰色欲| 国产成人无码无卡在线观看| 男人的天堂av社区在线| 大陆精大陆国产国语精品| 免费无码又爽又刺激高潮的动漫| 人妻三级日本三级日本三级极| 一女被两男吃奶玩乳尖| 无码AV片在线观看免费| 中文AV岛国无码免费播放| 99久久99久久加热有精品| 亚洲乱亚洲乱妇无码麻豆| 亚洲高清国产拍精品5G|