丰满少妇人妻无码专区,国产精品无码翘臀在线观看,xx性欧美肥妇精品久久久久久,国产成人无码综合亚洲日韩

Skip to content Skip to navigation

As Industry 4.0 initiatives bring more and more industrial axes of motion into the realm of automation, the need for cost-effective control across them grows as well. Advances in robotics, connectivity, cloud computing, artificial intelligence, data analysis, mobility and numerous other areas are converging to push global industry to new plateaus of operational efficiency and creating roles for actuators in places previously thought impractical.

Consider, for example, industrial tasks such as raising or lowering a conveyor to handle cartons of various sizes. If such adjustments are needed only a few times a day, automation with conventional technology would be difficult to justify. Automating such intermittent operations with pneumatic cylinders, for instance, would require a costly infrastructure and elevated maintenance costs while providing only limited control capability. Systems involving high-duty, high-precision linear actuators would provide the control needed but also far more additional capability than would be cost-justifiable for intermittent operations. Traditional industrial linear actuators would offer the right control capability at a lower cost, but even these would be difficult to justify because of the additional relay and other infrastructure necessary. Today’s smart electromechanical actuators, however, enable designers to automate intermittent operations affordably by embedding functionality that has previously required an external infrastructure.

Lower-cost actuators with embedded smart capabilities can be beneficial for intermittent applications in industrial automation plants. The actuators offer flexibility, cost efficiency and intelligence.

Smart actuators come of age

Smart linear actuators contain everything needed to switch the final element. Only two wires transmit power, and a few others communicate with a controller. This enables simple and efficient automated control of previously manually operated axes. System designers can program low-voltage switching directly into the actuator, eliminating the need for the operator to know what and when to switch.

Smart actuators are widely used in various plants where manual intervention can be avoided. For example, system designers can now program the actuators in advance to perform an automated switch in control conveyors. The actuators also provide controllability for logistic trains and automated guided vehicles.

Even if automating functions such as conveyor operation do not show significant payback, the ability to participate in a larger community of connected devices can have value. Embedding networking logic into inexpensive actuators enables connection with network buses such as a CAN Bus, PROFINET or Ethernet/IP. Previous manual activities can now integrate with larger and more complicated control schemes and workflow strategies. Actuators can share vast amounts of operating data with systems such as counting technology, which can signal the precise moment to change an instruction.

Or imagine integration of smart actuators with automated guided vehicles (AGVs) that move around the plant, receiving goods from conveying stations and transporting them to other stages of production or delivery. The AGV could approach the conveyor, signal the actuator to open the hatch containing only the blue boxes, fill to capacity and move to the next station. Such integration would not likely have been feasible – or even considered – prior to Industry 4.0 innovation.

Smarter maintenance

Smart actuators can also monitor their own health. They know whether the system is receiving enough voltage for the job at hand and may be able to adjust accordingly. They can accumulate data on the number of cycles performed and pace operation across shifts. And they can communicate absolute position at every point in the stroke, which can be programmed to push more current as needed to manage the load.

Although smart actuators themselves require little if any maintenance, they can reduce overall maintenance costs by recognising load variations that impact actuator wear and helping synchronise replacement with planned machine downtime accordingly.

Driving innovation

The potential to connect devices that have previously been out of reach is wide open, and geography is no longer a barrier to industrial automation and integration. The stage is set for production and automation engineers to define the actuator applications that will shape the next generation of industrial innovation.

back to top 99久久国产综合精品五月天| 亚洲精华国产精华精华好用吗| 99精产国品一二三产区NBA| 成人毛片一区二区| 无人区一线二线三线乱码| 亚洲日韩国产精品第一页一区| 台湾无码一区二区| 人妻少妇偷人精品无码| 色先锋av资源中文字幕| 国产亚洲999精品AA片在线爽| 欧美人体一区二区视频| 成年男女免费视频网站不卡| 免费人成网站免费看视频| 亚洲国产成人久久久网站| 亚洲国产精品久久精品成人网站| 青青久在线视频免费观看| 四川丰满少妇被弄到高潮| 无码AV不卡一区二区三区| 精品一区二区三区在线视频| 久久精品中文字幕无码| A V 在线视频 亚洲免费| 99久久精品国产一区二区蜜芽| 特黄少妇60分钟在线观看播放| 国产片AV国语在线观看手机版| 日韩欧美亚洲每日更新在线| 狠狠综合久久久久尤物丿| 狠狠躁日日躁夜夜躁2022麻豆| 无码精品人妻一区二区三区涩爱| 精品无码AV一区二区三区不卡| 亚洲AV日韩AV不卡在线观看| 亚洲成A人V欧美综合天堂麻豆| 一本色道久久东京热| 中文字幕VA一区二区三区| 人妻少妇精品无码专区吞精| 久久久人人人婷婷色东京热| 天堂资源最新在线| 亚洲精品无播放器在线播放| 国产丝袜美女一区二区三区| 色爱无码AV综合区老司机非洲| 久久亚洲精品无码AV| 成在线人午夜剧场免费无码|